GENKWANIN 4'-GALACTOSIDE AND OTHER CONSTITUENTS FROM DUABANGA SONNERATIOIDES*

S. C. SHARMA, Y. N. SHUKLA, J. S. TANDON and M. M. DHAR

Central Drug Research Institute, Lucknow, India

(Received 2 September 1973. Accepted 20 September 1973)

Key Word Index—Duabanga sonneratioides; Lythraceae.

Our initial investigations^{1,2} on the stem bark of *D. sonneratioides*. Ham. (Lythraceae) showed the presence of several known constituents. Further work on this plant, because of its activity against Walker's carcinosarcoma³ has led to the isolation of ellagic acid, tetramethylellagic acid, epioleonolic acid and a new flavone galactoside.

The flavone galactoside (1) $C_{22}H_{22}O_{10}$, m.p. 260° (dec.), v_{max} 3400, 1650, 1600, 1555, 1248, 1060 and 830 cm⁻¹. λ_{max} (EtOH) 226, 270 and 325 nm (AlCl₃) 280, 300, 335 and 385 nm (NaOAc) 270 and 325 nm (NaOAc-boric acid) 226, 270 and 325 nm is sparingly soluble in CHCl₃, Me₂CO, EtOAc and MeOH and gave positive Fiegels' test for glycoside. On acidic hydrolysis, 1 furnished an aglycone (2), $C_{16}H_{12}O_5$, m.p. 267°, M⁺ 284, λ_{max} 225, 270 and 329 nm (NaOAc) 225, 270 and 329 nm identical with genkwanin⁴ and a sugar, galactose (PC). 2 formed a diacetate, $C_{20}H_{16}O_7$, m.p. 204° (IR, NMR and MS).

The shift in the UV maxima of 1 in the presence of AlCl₃ indicated the presence of a free 5-hydroxyl. This shows that the sugar moiety must be at position 7. It is known that glycosidation of the 4'-hydroxyl group produces a 3–10 nm hypsochromic shift in band 1.⁵ Analogous with this, λ_{max} 329 nm of 2 shifts to 325 nm in 1. The chemical and spectroscopic evidence thus indicated 1 to be 4'-O-galactoside of 5,4'-dihydroxy-7-methoxy-flavone.

Ellagic acid $C_{14}H_6O_8$, m.p. $>360^\circ$, M^+302 , λ_{max} 258 and 368 nm gave a positive Griessmayer test (IR and m.m.p.). It formed a tetraacetate $C_{22}H_{14}O_{12}$, m.p. 336° and a tetramethyl ether $C_{18}H_{14}O_8$, m.p. 340°. Tetramethyl ellagic acid $C_{18}H_{14}O_8$, m.p. 340° was characterized on the basis of IR, UV, MS and m.m.p.

Epioleonolic acid $C_{30}H_{48}O_3$, m.p. 302° has been identified through its IR, MS and NMR and acetate $C_{32}H_{50}O_4$, m.p. 268° .

EXPERIMENTAL

UV spectra were determined in EtOH, IR spectra in KBr and 60 MHz NMR spectra in CDCl₃ with TMS as internal standard. Uncorrected capillary m.ps are reported.

Extraction and separation of constituents. Air dried powdered stem bark (6 kg) were extracted with 50% EtOH

- BHAKUNI, D. S., GUPTA, N. C., SATISH, S., SHARMA, S. C., SHUKLA, Y. N. and TANDON, J. S. (1971) Phytochemistry 10, 2247.
- ² SHARMA, S. C., SHUKLA, Y. N. and TANDON, J. S. (1972) Phytochemistry 11, 2621.
- ³ BHAKUNI, D. S., DHAR, M. L., DHAR, M. M., DHAWAN, B. N., GUPTA, B. and SRIMAL, R. C. (1971) *Ind. J. Exp. Bio.* **9.** 91.
- ⁴ HASEGAWA, M. and SHIRATO, T. (1952) J. Am. Chem. Soc. 74, 6114.
- MABRY, T. J., MARKHAM, K.R. and THOMAS, M. B. (1970) The Systematic Identification of Flavonoids, p. 45, Springer, Berlin.
- * Communication No. 1882 from Central Drug Research Institute.

(40 L) and the extract concentrated in vacuo below 50. The syrupy material obtained was extracted successively with C_6H_6 (6 L). EtOAc (6 L) and n-BuOH (4 L). C_6H_6 and EtOAc fraction gave compounds reported earlier^{1,2} and also tetramethylellagic acid (10% EtOAc in C_6H_6) and epioleonolic acid (20% EtOAc in C_6H_6). n-BuOH extract was freed of the solvent and the residue treated with Me₂CO. Me₂CO soluble fraction gave 1 while Me₂CO insoluble part afforded ellagic acid.

Genkwanin 4'-galactoside (1). Me₂CO soluble part of the *n*-BuOH extract, deposited a solid which was recrystallized from EtOH (Found: C. 58·70; H. 5·20. C₂₂H₂₂O₁₀ required: C. 59·10; H. 4·91°₀). Acid hydrolysis and extraction with Et₂O afforded genkwanin, m.p. 267° (3 crystallization gave m.p. 280°) (Found: C. 67·10; H. 4·30.

 $C_{16}H_{12}O_5$ required: C, 67.60; H, 4.20%).

Diacetate. M.p. 204° (Found: C, 64·10; H, 4·10, $C_{20}H_{16}O_7$ required: C, 64·60; H, 4·30°.). The aq. hydrolysis

soln was neutralized (BaCO₃) and PC indicated that the only sugar present was galactose.

Ellagic acid. The Me₂CO insoluble fraction from the *n*-BuOH extract was extracted (Soxhlet) with hot Me₂CO. Concentration and standing in the cold furnished a yellow solid. This on recrystallization gave yellow needles, m.p. $> 360^{\circ}$ (Found: C, $56\cdot10$; H, $2\cdot10$. C₁₄H₆O₈ required: C, $56\cdot60$; H, $1\cdot98^{\circ}$ ₆).

Tetramethyl ellagic acid. Obtained as needles when crystallized from MeOH and dioxane m.p. 340° (Found: C, 59·80: H 4·20. $C_{18}H_{14}O_8$ required: C, 60·33; H, 3·91%).

Epioleonolic acid. Crystallized from MeOH. m.p. 302 (Found; C. 78-50; H. 9-86, C₃₀H₄₈O₃ required; C. 78-94; H. 9-86°,).

Phytochemistry, 1974. Vol. 13, p. 528. Pergamon Press. Printed in England.

ACORENONE-B IN ANGELICA LUCIDA OIL

BRIAN M. LAWRENCE

Stange Canada Ltd., 3340 Orlando Drive, Mississauga, Ontario, Canada L4V 1C7

and

JOHN K. MORTON

Biology Department, University of Waterloo, Waterloo, Ontario, Canada

(Received 29 August 1973. Accepted 20 September 1973)

Key Word Index—Angelica lucida; Umbelliferae; common name?; essential oil; acorenone B; mono- and sesquiterpenes.

Plant. Angelica lucida L. (≡ Coelopleurum actaeifolium (Michx.) Coult. & Rose, Archangelica gmelini (specimen retained in Herbarium at University of Waterloo, NA 5422). Source. Blue Rocks, Lunenburg. Nova Scotia, Canada. Uses. Tender parts of plant used as food and tonic¹ by Eskimos.

Present work. The dried seeds were water distilled to yield 0.15% essential oil. The oil, which was analysed by a combination of techniques described previously² was found to contain acorenone-B (43·1%), β-phellandrene (16·1%), myrcene (8·0%), caryophyllene (7·5%), α-pinene (2·0%), phenyl ethyl isovalerate (2·0%), bornyl acetate (1·6%), benzyl isovalerate (1·1%), camphene (0·3%), β-pinene (0·2%) and sabinene (0·2%).

Comment. Acorenone B, which was recently isolated from Bothriochloa intermedia (R.Br.) A. Camus (Gramineae) and synthesized,³ was found to be identical to acorenone previously isolated from Acorus calamus L. (Araceae).⁴

¹ French, D. H. (1971) The Biology & Chemistry of the Umbelliferae (Heywood, V. H., ed.), pp. 385-412, Publ. for Linn. Soc., Academic Press, London.

² LAWRENCE, B. M. (1971) Can. Inst. Food Technol. J. 4, A44.

³ McClure, R. J. (1969) Ph.D. Thesis, Georgia Inst. Technol.

⁴ VRKOC, J., HEROUT, V. and SORM, F. (1961) Coll. Czech. Chem. Commun. 26, 3183.